# The Rapid Growth in Desalination - How is the Industry Responding?

Presented to

#### EnviroArabia 2007

by

Lisa Henthorne, P.E.

VP, International Desalination Association
VP, Global Director of Desalination Technology,
CH2M HILL

23 April 2007





#### Presentation Outline

Introduction to the Desalination Market

Environmental Considerations in Desalination

How is the Industry Responding





## Introduction to the Desalination Market





## Desalination Offers...

- Drought-proof reliability
- Timing and availability
- Potential unlimited production
- Easy expandability





## Desalination Removes Salinity

Seawater

High Salinity 10,000-50,000 mg/L Brackish

Moderate Salinity
1,000-10,000 mg/L

Reuse

Low Salinity > 1,000 mg/L





## **Desalination Process Options**







#### What is Desalination?





#### **Desalination Process - Thermal**

- Uses distillation techniques to vaporize pure water from saline sources
- Sophisticated and robust designs since 1950's









#### Desalination Process - Membrane

- Uses thin, semi-permeable membranes to separate saline water into low salinity product water and high salinity concentrate stream
- Commercial plants beginning in early 1970s (RO)









**Effluent** 

Virus

Bacteria

#### Desalination in Advanced Reuse





#### **Desalination Market Drivers**

- Cost of traditional supply increasing and availability decreasing
  - Surface waters
  - Groundwater
- Decreased cost of membrane desalination
- Diversification of supply Drought
- Demographics People want to live coastally where water availability is limited





## Regional Distribution of Desalination Technology









Wangnick, 2000





## Where Are We Going?



CH2MHILL



## **Environmental Considerations in Desalination**





#### Sources

- Brine and waste stream disposal
- CO<sub>2</sub> and air emissions for power/heat requirements
- Impingement and entrainment of marine life
- Power/water imbalance in the GCC
- Disposal of consumables





#### **Brine Stream**

- Technology Choice Dictates Brine Characteristics
  - Level of salinity a function of water recovery
  - ightharpoonup Concentration Factor = 1/(1-R)
  - Generally reflects characteristics of feedwater in a more concentrated form
- Seawater Desalination
  - Disposal to the sea via outfall (submerged or open)
- Brackish/Reuse
  - Disposal to sewer, surface water or injection





## **Brine Stream Characteristics**

|                      | Brackish/<br>Reuse RO   | Seawater RO                          | MSF                                | MED                                |
|----------------------|-------------------------|--------------------------------------|------------------------------------|------------------------------------|
| Feedwater            | Brackish/<br>Wastewater | Seawater                             | Seawater                           | Seawater                           |
| Recovery             | 50-80%                  | 35-60%                               | 10-20%                             | 20-35%                             |
| Brine<br>Temperature | Ambient                 | Ambient                              | 5-15 °C<br>above<br>ambient        | 5-15 °C<br>above<br>ambient        |
| Brine<br>blending    | Not typical             | Being<br>practiced on<br>small scale | With cooling<br>water<br>discharge | With cooling<br>water<br>discharge |
| Concentration Factor | 2.5 to 6.7              | 1.4 to 2.5                           | <1.15                              | <1.15                              |





#### Other Waste Streams

### Function of Technology Choice

- Membrane Plant
  - Ferric/polymer-containing backwash/sludge
  - Neutralized RO cleaning chemicals (citric acid and caustic, mixed and diluted)
  - Neutralized MF/UF cleaning chemicals potentially (acid and hypochlorite – must be neutralized
- ▶ Thermal Plant
  - Gases such as CO<sub>2</sub>
  - Cleaning chemicals from infrequent maintenance





## CO<sub>2</sub> and air emissions

 Sources of traditional power/heat generate CO<sub>2</sub> and other emissions as function of fossil fuel

| Process     | Steam (m <sup>3</sup> distillate to ton steam) | Electricity (kwhr/m³) |
|-------------|------------------------------------------------|-----------------------|
| BWRO/Reuse  | NA                                             | 0.5-1.5               |
| Seawater RO | NA                                             | 2.5-4.0               |
| MSF         | 7-12 to 1                                      | 2.0-3.5               |
| MED         | 8-12 to 1                                      | 1.5-2.5               |





## Impingement and Entrainment

 Open intakes with conventional screening can have a negative effect on marine life







### Power/Water Imbalance in the GCC

 Water demand fairly constant year-round while power demand drops to less than 50% in winter months









## Disposal of consumables

- Membrane plants
  - ▶ Longevity of membrane elements, 4-10 years
  - ▶ Longevity of cartridge filters, 3-6 months





## How is the Industry Responding





## Brine Disposal

- Membrane Plants
  - Siting and brine disposal studies
  - Dispersion nozzles outfalls
  - Blending
- Thermal Plants
  - Ambient quenching and blending









## Other Waste Disposal

- Recovery of backwash and land disposal of solids
- Neutralization of acids/bases and permit limitations





#### CO2 and Other Emissions

- Thermal Plants
  - ▶ MED more energy efficient than MSF
- Membrane Plants
  - Significantly improved energy recovery
  - Renewable energy applications









## Renewable Power/Desalination

- Perth Australia 143,000 m³/day RO plant requires about 24 MW of power
- Power purchase agreement from Water Corporation to purchase wind power at slightly increased cost to power desal plant resulting in new wind farm









## Impingement and Entrainment

- Intake designs improved/innovative intakes
- Improved passive screening mechanisms
- Co-location









## Power/Water Imbalance in GCC

Move to hybrid thermal/membrane plants









## Comparison of Hybrid vs Non-hybrid IWPP







## Desalination and the Environment

- Consider advanced water reuse as viable industrial source of high quality water
- Valuing energy at/near market value will greatly improve energy efficiency and therefore protect the environment
- Public education regarding the value of water to encourage efficient use
- Desalination industry is committed to protecting the environment through innovation and improvements in the technologies and applications





- On behalf of IDA 'Thank you'.
- 2007 IDA World Congress in Canary Islands
  - oct 21-26, 2007
  - www.idadesal.org

